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Spiral waves in a class of optical parametric oscillators
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The formation of three-armed rotating spiral waves is shown to occur in a spatially extended nonlinear
optical system with broken phase invariance. These new spatial structures are found in the mean-field model of
a class of optical parametric oscillatorse{3-2w+ w) in which the multistep process«2= w+ w breaks the
phase invariance of the down-conversion process. A parametrically-forced Ginzburg-Landau equation is de-
rived to explain the existence of phase-armed spiral waves.
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Spiral waves provide a beautiful and generic example ofng fields, two distinct parametric processes may simulta-
pattern formation in spatially extended systems in diversaeously occur in the nonlineay(® crystal: nondegenerate
fields of nonlinear sciencg4]. In nonlinear optics, since the parametric down-conversion of the pump field (3 »
pioneering work by Coullet and co-workefg], a large +2w) and, as a multistep process, second-harmonic genera-
amount of work has been devoted to the study of optication (w+ w=2w) [22]. We assume that the nonlinear crystal
vortices[2-7]. Phase spiral patterns have been shown to bé phase-matched for the divide-by-three down-conversion
generic to the Maxwell-Bloch laser equatidi®s-4] and ob-  process »— 2w+ w, i.e., k(3w)=k(2w) +k(w), whereas
served in diverse laser systelfs-7]. Optical vortices and the multistep parametric interaction+ w=2w, is assumed
spiral waves also arise in optical parametric processes in @ be weakly phase-matched with a phase mismatch param-
nonlineary® medium[8—10]. Most of these previous stud- eterAk=k(2w)—2k(w) much larger thanr/I, | being the
ies were focused on phase invariant systems, where spiratystal length. The mean-field equations for the normalized
waves manifest usually as phase defects for either scalar amplitudesA; and A, of intracavity signal and idler fields
vectorial fields[11]. A different kind of spiral patterns may can be derived starting from the paraxial propagation wave
occur in spatially extended systems with broken phase inequations for pump, signal and idler fields in presence of the
variance, where domain walls separatimglifferent phase- multistep parametric proce$®2] after the introduction of
locked states may appear and tend to spi#l]. Armed  the single-longitudinal mode approximation and eliminating
spiral waves corresponding to=2, 3, and 4 have been the pump field from the dynamics as detailed, e.g., in Ref.
shown to be rather generic in periodically forced oscillatory[23]. This yields:
systems and found in the analysis of a forced Ginzburg-

Landau equatiorf12—15. The simplest and most studied A=y [ —(1+iA) A +ia,V2A + uAl + cAT A,

case corresponds to=2, where two kinds of domain walls, )

Ising and Bloch walls, may separate two equivalent states — Az *Aql, (18
which differ each other by & phase shift. In this case sta-
tionary Ising walls may lose their stability to a pair of coun-
terpropagating moving frontd8loch wallg, which may lead
to the formation of a two-armed rotating spiral wapd2].
Observation of phase-locked armed spiral waves has been —|A|2A,
reported in nematic liquid crystals subjected to a rotating

magnetic field forn=2 [16] and recently in periodically

forced reaction-diffusion systems fon=2, 3, and 4 In Eqgs.(1), u is proportional to the amplitude of the external
[17,18. In the context of nonlinear optics, Ising-like domain pump field; (v1,7,), (a1,a,), and (A1,A,) are cavity de-
walls connecting two phase states have been found in opticgRy rates, diffraction and cavity detuning coefficients for sig-
parametric oscillatoréOPO) in the degenerate configuration nal and idler fields, respectivelyy{a,=2vy,a, if signal and

[19], whereas Bloch walls and Ising-Bloch transitions haveidler are resonated in the same cayigndo is a dimension-
been recently predicted for a type-Il OPO with weak bire-less parameter that measures the strength of the multistep
fringence and dichroisrf20]. So far, however, no example parametric process. Its explicit expression reads

of three-armed spiral waves has been reported yet for a nor= (o, /01) (2 v1Tr/3) Y2 whereTg is the cavity roundtrip
linear optical system. time, f=|sin(Akl/2)/(Akl/2)| is the mismatching parameter

In this Rapid Communication we provide an example of afor the 2w=w+ w process, andr,,o, are proportional to
nonlinear optical system with broken phase invariance whictihe elements of the second-order susceptibility tensor for the
supports three-armed spiral waves. We consider a doublgvo parametric processesn3=2w+w and 2v=w+ w, re-
resonant OPO in a frequency configuratj@d] that converts  spectively[22]. The order of magnitude of largely depends
an unresonated plane-wave pump field at frequengyir@o  on phase matching conditions; here we consider the case of
signal and idler fields at frequenciesand 2w, respectively. weak phase matching such thais of order~1 or smaller.
Owing to the 1:2:3 ratios among the frequencies of interactAs compared to the standard mean-field model of a nonde-

(o

5tA2= '}/2{ _(1+|A2)A2+|a2V2A2+MA1‘ - 2 Ai

: (1b)
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FIG. 1. Spiral waves obtained from numerical simulations of the 0. . ! . L ! L L
OPO equation$l) in case of phase invariance€0). (a),(c) are Q.S G 20 2.5 3.0 35
snapshots of the phase of signal field, abgi(d) are the corre- SHG parameter G
sponding intensity patterns obtained for=1.3 at timet=10 000 ) _ _ _ N
[(a) and(b)] and for =2 at timet=6000[(c) and(d)]. The other FIG. 2. Behavior of signalR;) and idler R,) intensities, ver-

parameter values are:y;=1, y,=0.5, a;=1, a,=0.3, A, sus the second-harmonic generati®HG parametero, corre-

=0.45, andA,=0 (uy,=1.0440). The equations were integrated sponding to the homogeneous phase-locked solutions of the OPO

using a pseudospectral technique in a square domain of size Hfluations. Continuous curves denote the stable branch, whereas the

x50 with periodic boundary conditions. A spatial grid of 128 dashed ones the unstable branch. Parameter valuesyarey,

% 128 points was used; time stejp=0.02. =1, ay=1, a,=0.5, A;=1, A,=0.1, andu=2. The locked so-
lutions exist fore>o.=1.655, and three phases, which differ by

i multiplies of =27/3, are possible.
generate OP@see, e.g., Ref$9,24]), the multistep paramet-

ric process introduces quadratic nonlinear interactions that . .

break the phase invariance of the nondegenerate OPO. T & the phasesp, and_ ¢z Of A andA,, Wh'.Ch d|ffgr from
trivial zero solutionA;=A,=0 undergoes an Hopf bifurca- each other by multiplies of 2/3, are possible. This means
tion with frequencyw,= v, vo(Ay— A1)/ (y1+ 7,) to a spa- that the system exhibits three different phase states, and do-
fially homogeneous Cstaté ?or zsignél antj idlzer fields it MaIN walls connecting different phase states are possible.
= up=(1+A2)Y2 when A>0, where A=(y,A Numerical analysis of Eq$1) for o> o shows that phase-

- Mth— ’ - 121

+5,0,)/(y1+ 7,) is the effective detuning parameter. For locked states with different phases may emerge from noise in

o=0, phase invariance is not broken and defects in the forn%jlfferent spatial regions, Wh'Ch. are c_onn_ected _by doma_m
. . . . o alls that appear as dark lines in the field intensity. Domain
of optical vortices, corresponding to phase singularities of"

the fields, can be observed. Frozen states of rotating spirgffaIIS are generally moving and their dynamics seems fo be
; ; . ' governed by both curvature effects and by motion of the
waves may be found in numerical simulations of E(fs.

when o=0 andA>0 (see Fig. 1 These defect states are walls, perhaps due to nonvariational effects. Shrink or ex-
analogous to those found in the Maxwell-Bloch laser equa-g ﬁnggtged?sm;g;s\?ﬁgs’hfxg\'/r;gr tr?woa;eoggmdslgln;;r:amigl
tl(;r:]segg earglpage gogzll{}s;ﬁgt gltr;tfl%r:]eo:gitlcér;noszt:re _t%?%ihehaviors can be observed. In particular, stable three-armed
gquation forA>0 [q25] For a nonvanisFr)]ing value @fgthe rotating spirals can be found in numerical simulations of
phase invariance of the OPO equations is broken, the onsgqs'(l) with a flat pump profile starting from a small ran-

; . - m noise as an initial condition and assuming periodic
of parametric oscillation becomes subcritical, and phase; - . .
. .“boundary conditiongsee Fig. 3. Spiral waves are nucleated
locked homogeneous states may exist. These states are gi

V§Sbntaneously from noise and correspond to three domain
by Aq o= Ri{%exp@q&l,z), where ¢12:(01;,292)/,3’ b2=(20, WFZ”S, that sei;arate three different ph;se—locked states, coa-
+02)13, s'”alzll(AlRl_ZAZRZ)/(“ RiR)™, sin6,=2(A1R1  |egcing in one point and rotating around this point. Spiral
_ZAsz)/("Rle_z)' and Ry ,R, can be found numerically \yayes with different ordered phase states rotate in opposite
from the solutions of a quartic algebraic equationrin  gjrections, and annihilation of counter-rotating spirals may
=Ry/R,. The existence of the locked solution requires  occur, In order to test the robustness of spiral waves under

>0, where the critical valuer; can be found numerically more realistic finite pumping configurations, we considered
by an analysis of the quartic equation; in particular, it turns

out thato,=0 for A;=A,, i.e., whenw.=0. Foro<og,

the system does not admit of a phase-locked stationary solu-
tion, and a limit cycle is found. Foo> o, two possible
solutions for R¢,R,) can be found from the quartic equa- ( ‘/2(@3
tion; however, one branch is always unstable to perturbations | S@/\_ﬁ,\
with zero transverse wave numbeee Fig. 2 The stability N— ﬂ

of the other branch against perturbations with transverse a‘ - 35) ’7\@\( a

wave numbek#0 can be tested by numerical evaluation of g 3. Rotating three-phase spiral waves of the OPO equations
the eigenvalues in the linearized system obtained by linear;th broken phase invariano@lat pump field, periodic boundary
izing Eqs.(1) around the phase-locked state. In general, Weonditions. The figure shows snapshots at tirtre 9850 of the
found that the phase-locked homogeneous state is linearphase[(a)], intensity [(b)], and real-par{(c)] of the signal field
stable and no modulational instabilities could be found for aa,(x,y,t). The SHG parameter is=2 (o.=1.655); the other pa-

wide range of parameter values. Notice that, for a giverrameter values are the same as in Fig. 2. The computing window is
value of (R;,Ry) in the stable branchhreedifferent values 68x68 on a 12& 128 spatial grid; time stemt=0.01.
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FIG. 6. Snapshots at tinte= 6000 of intensity[(a) and(c)] and
()] phase|(b) and(d)] of holey phase patterns fd@; in case of a flat
[(a@ and(b)] and Gaussiaf(c) and(d)] pump beam, as obtained for
. l o=6. The other parameter values are as in Figs. 3 and 5, except for

ro=19. The integration window is 2020; time stepdt=0.005.
FIG. 4. Snapshots at successive times showing the formation

from noise of a rotating three-phase spiral wave for a superpreaking parameter, say o~ €. Since we are interested in
Gaussian pump fieldnf=14r,=10.45u0=2). Parameter values the phase-locked regime, we also assumed a small value for
are as in Fig. 3. The box size in 222 on a 12& 128 spatial grid;  , and of the same order of magnitudecsi.e., we assume
time step:dt=0.01. A,~A,. The amplitude equation for Eqgél), close to the

) bifurcation pointu=u,, can be derived as a solvabili
the case .Of a super-Gaussian pump beam '9°a”y flat near theyngition inei muﬁiplg-tgcale asymptotic expansion followi?:g
cavity axis with fast decay at the boundary, i.e., we assumeﬁl]e same technique as detailed in REE%,25. At leading
M(X,y)zlu,o exp[—(r/ro)zm], wherer is the transverse radial order, one finds thatKl,Az)T:[l,(l_iA)/Mth]TF(X,y,t)

coordinatey, the pump beam sizen the order of the super +0(€?), where the amplitud&~ e satisfies the following
Gaussian, angey the peak gain. Spontaneous formation Ofequation:

rotating spirals from noise are observed in this case as well

(see Fig. 4 remarkably, stable rotating spirals are found o F = aF + BV2F + pF*?— 5|F|%F, )
even for a simple Gaussian purtgee Fig. % which may be

of major importance for an experimental observation of spi-where we have set

ral waves. Notice also that the circular symmetry of the

boundary helps the formation of large spiral structures for 2y1yopin(m—pn) . Y1v2(Az2—Ay)

large aspect ratiogsee Fig. 5 similar boundary-enhanced O S yati(yi—y2)A : yity, (33
spiraling was previously reported for both phase and inten-

sity spiral waves in other nonlinear opticql systefhg, 26. iy ysla;—a,—iA(a;+ay)]

Well aboveo,, the tendency of spiraling is prevented, and B= oyt i (i7" (3b)
more complex patterns, slowly evolving in time, are ob- NTRTIANT Y2

served(Fig. 6). These structures do not arise from a modu- (1-3A%—4iA)

lational instability, instead they originate from the spontane- p=0 LERS _ , (30
ous nucleation of bubbles near the domain walls, leading to a 2uinl Yt y2ti(y1—v2)A]
characteristic holey tiling in the phagsee Fig. 8 We did

not attempt to fully capture the complex dynamical scenario 5= 2y172 (3d)
of Egs.(1) in the whole parameter space; instead, we tried to Yit voti(yi—y2)A°

understand the existence of three-armed rotating spiral waves
by the derivation of an order parameter equation close téfter the change of variables—ct, V2—(1/c,)V?, F
threshold forA>0 and for a small value of the symmetry- —c3F, with ¢,=1/Re(@), c,=Re(8)/Re(a), and |c;|?
=Re(a)/Re(5), Eg. (2) reduces to the following parametri-
=100 =300 1=5000 cally forced complex Ginzburg-Landau equation:

=20
N OF=1+iv)F+(1+in)V?F—(1+i0)|F|?F+pF*2,
(a) @ F(H P+ (VR (ORI +pPe,
-r
where v=Im(«a)/Re(@), n=Im(B)/Re(B), 6=Im(5)/

Re(s), andp=|p|/[Re(a)Re(s)]"? In its present form, Eq.
f (4) describes quite generally the dynamics of an oscillatory
system close to an Hopf bifurcation when it is resonantly
forced at a frequency @, wherew is its natural frequency
[12]. This equation is known to admit of three stable phase
states, which differ each other by multiplies ofr3, for p

FIG. 5. Same as Fig. 4 but for a Gaussian pump=(y, >p., Where the critical value for phase locking is given by
=27). Parameter values are the same as in Fig. 4 excegidor Pc=2[(1+ 62)Y4(1+1%)Y2—(1+v6)]1*2 Domain walls
=2.3. The box size in 6860 on a 12& 128 spatial grid; time step: connecting different phase states are in general moving due
dt=0.01. to nonvariational effect§l5], and three-armed rotating spi-
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rals, similar to the ones observed in our numerical simula- In conclusion, three-armed rotating spiral waves have
tions, are possible in the phase-locking regifig,15. In been predicted to exist in a nonlinear optical system with
addition, it is remarkable that these structures are robudi"oken phase invariance. We considered an OPO for the fre-

against noise and persist for spatially inhomogeneous forcinfUeNncy down-conversionad—2w+w in which a weakly
. . . : . hase-matched multistep parametric process allows for mul-
[14]. Spiral waves observed in our numerical simulations

. X tistability of three different phase states. The spiral waves
thus bear a close connection with phase-locked armed spirg[;5norted by this system are rather distinct from other kinds
waves generally observed in resonantly forced oscillatorf phase and intensity spirals previously found in nonlinear
systems. More complex patterns, such as those observed @ftics[2—4,8,1Q; instead they bear a close connection with
large values of the symmetry-breaking parametésee Fig.  spiral waves found in parametrically forced magnetic and
6), are not, however, described by the reduced order paranghemical systemfgl2,17,18.
eter equation(4), and seem peculiar to the original OPO  This work was partially supported by the “Progetto Gio-
equations. vani Ricercatori” and by the ESF Network PHASE.
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